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Direct numerical simulation (DNS) and a linear analysis of the global instability of
a buoyancy layer have been performed. The spatially developing basic flow under
consideration is induced by a vertical heated flat plate immersed in a thermally
stratified medium. It is revealed numerically that, depending on the modified Grashof
number, the disturbed flat-plate boundary-layer flows may not relax to the basic state
but instead oscillate with an intrinsic frequency. The front of globally unstable waves
in numerical simulations agrees very well with the position of marginal absolute
instability, and the dominant frequencies in the oscillating region are identical and
tuned to the marginal absolute frequency derived from the local linear dispersion
relation based on the unperturbed basic state. The front of the nonlinear global
modes is thus of a pulled type in this buoyancy-driven flow system.

1. Introduction
Depending on their responses to inflow impulses, spatially developing shear flows

may behave as noise amplifiers or as oscillators, which are intrinsically related to the
convective/absolute nature of the linear instability. It is well-established that when
a flow is absolutely unstable in a finite region, such as counterflow mixing layers,
hot jets and wakes, self-sustained resonances or global modes tuned at a well-defined
frequency may occur (see Huerre 2000, for a review). Both kinds of flow exhibit
strong nonlinearities. The objective of the present investigation is to determine the
fully nonlinear global mode properties of the boundary-layer flow over a flat plate,
which is immersed in thermally stratified medium.

Two essential features of global modes are the selection of the front and the
global frequency. Several principles have been proposed to reveal the relationship
between the global frequency and the local absolute frequency ω0(X) (Koch 1985;
Monkewitz & Nguyen 1987; Couairon & Chomaz 1997a, b, 1999a, b; Pier et al.
1998) An absolutely unstable flow is characterized by ω0,i(X) = Imω0(X) > 0 for
weakly non-parallel flows (Briggs 1964; Bers 1983), where perturbations are not
swept away from the source as in convectively unstable flows, but grow in situ and
lead to a trailing front at some upstream position. Dee & Langer (1983) found
that the front, separating the basic state upstream from the finite-amplitude state
downstream, moves at the speed of the edge of the linear wave packet. This kind
of front has been referred to as a pulled front (Chomaz 2003, 2005). Couairon &
Chomaz (1997a, b, 1999a, b) analysed Ginzburg–Landau-type equations in a semi-
infinite domain and showed that the nonlinear global mode occurs as soon as the
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medium is nonlinearly absolutely unstable, and the selected frequency at threshold
is the absolute frequency. In an infinite domain the steep global mode, a nonlinear
global mode described by Pier et al. (1998), also obeys a marginal criterion: the
global mode is triggered at the upstream boundary of the linear absolutely unstable
domain and the global frequency coincides with the real absolute frequency at the
boundary.

For a parallel flow, Delbende & Chomaz (1998) have shown numerically that the
front separating the von Kármán saturated street from the unperturbed upstream
wake is a pulled front. For real spatially developing flows, Pier (2002) studied the
frequency selection criterion of vortex shedding in cylinder wakes and obtained a good
agreement between the numerical simulation and the marginal absolute frequency
calculated on the basis of the mean flow. The self-sustained oscillation frequency in
the separated boundary layer flow over a double-bump geometry as computed by
Marquillie & Ehrenstein (2003) was predicted well by the marginal absolute frequency,
where mean velocity profiles were used for the local stability analysis. However, it is
not helpful to identify the mechanism, i.e. the unstable modes governed by the linear
absolute instability at the pulled front, when the mean velocity profile but not the
undisturbed basic flow is used in an analysis, because nonlinear effects have been
partially included in the profile.

For a flat-plate boundary-layer flow, Gaster & Grant (1975) have shown that
the impulse response of the Blasius boundary layer was convected downstream, so
the primary Tollmien–Schlichting modes are unambiguously convectively unstable.
According to Koch’s (2002) analysis, both the three-dimensional wave packet for
primary crossflow vortices and the two-dimensional wave packet of high-frequency
secondary instability were found to be convectively unstable as well. Recently, Brandt
et al. (2003) showed numerically that the secondary streak instability of boundary-
layer flow is also convective in nature.

When the flow is driven by buoyancy, however, Krizhevsky, Cohen & Tanny
(1996) have shown that the flow changed from convectively unstable to absolutely
unstable at a critical Grashof number Gca , which increases with the Prandtl
number. Tao, Le Quéré & Xin (2004a) extended the spatio-temporal analysis by
providing a more general basic flow solution for a buoyancy-driven boundary layer
immersed in a thermally stratified medium. Based on this solution, a finite absolutely
unstable domain was found in the downstream direction, defined by two critical
Grashof numbers Gca and Gac where the convective–absolute and absolute–convective
instability transitions occur. Such kinds of flow are called type ‘AF’ by Monkewitz &
Sohn (1986), meaning absolutely unstable flow with a free boundary. The buoyancy-
driven or natural–convection boundary-layer flow is a basic model for solar heating
systems or mountain winds (Prandtl 1952). It is also an appropriate model to study
the non–linear global instability: it is a weakly non-parallel flow, and the marginal
linear absolute frequency can be obtained directly by analysing the basic flow solution.
Though substantial progress in the understanding of global instability has been made
recently (for a review see Chomaz 2005), to the best of our knowledge, the front and
global frequency selection criteria for flat-plate boundary-layer flows have not yet
been identified, which is the motivation for the present work.

The paper is organized as follows. In § 2 the numerical solution procedure is
described. The basic flow and linear theory are briefly outlined in § 3. The nonlinear
global mode supported by the spatially developing basic flow is documented in
§ 4, as computed by direct numerical simulation of the coupled Navier–Stokes and
energy equations. The corresponding front selection criterion and the global frequency
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Figure 1. Sketch of a buoyancy-driven flow near a vertically heated flat plate, which is
immersed in a thermally stratified medium.

selection criterion of the global mode are discussed. Finally, some conclusions are
drawn in § 5.

2. Geometry and governing equations
The boundary layer to be considered here is shown in figure 1. The temperature at

the vertical heated wall T ∗
w(x∗) and in the ambient fluid T ∗

∞(x∗) vary linearly in the
downstream direction,

T ∗
w(x∗) = T ∗

w(0) + Nwx∗, T ∗
∞(x∗) = T ∗

∞(0) + N∞x∗, T ∗
w(0) − T ∗

∞(0) = �T ∗(0) > 0.

Nw and N∞ are the temperature gradients at the wall and in the medium. The
coordinate x∗ is measured vertically and opposite to the direction of acceleration due
to gravity g, and y∗ is the coordinate normal to the surface (stars indicate dimen-
sional quantities). The subscript ∞ denotes the ambient condition, and �T ∗(0) is the
temperature difference between the wall and the background fluid at x∗ =0.

In order to obtain a stable thermally stratified medium, we assume N∞ > 0 and
Nw � 0. H ∗ is a characteristic length with T ∗

∞(H ∗) = T ∗
w(0). L∗ is the length of the

computational domain used in the numerical simulations. The Grashof number, the
Prandtl number and other non-dimensional parameters, namely temperature, lengths,
time and pressure, are defined as

Gr =

(
gβ�T ∗(0)H ∗3

ν2

)1/4

, P r =
ν

κ
, Φ =

T ∗ − T ∗
∞(x∗)

T ∗
w(x∗) − T ∗

∞(x∗)
,

(X, Y, H, L) =
Gr

H ∗ (x∗, y∗, H ∗, L∗), τ =
τ ∗νGr3

H ∗2
, P =

[P ∗ − P ∗
∞(x∗)]H ∗2

ρν2Gr4
,

where ρ, ν, κ and β are the fluid density, the kinematic viscosity, the thermal diffusivity
and the coefficient of thermal expansion.
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By applying the Boussinesq approximation, we obtain the following governing
dimensionless equations for the perturbations u, v, φ and p:

∂u

∂τ
+

∂(uu + 2uU0)

∂X
+

∂(vU0 + uV0 + uv)

∂Y
= − ∂p

∂X
+

1

Gr
∇2u +

1

Gr
φ[1 + (a − 1)εX],

∂v

∂τ
+

∂(vU0 + uV0 + uv)

∂X
+

∂(2vV0 + vv)

∂Y
= − ∂p

∂Y
+

1

Gr
∇2v,

∂φ

∂τ
+

∂(φU0 + uφ)

∂X
+

∂(V0φ + vφ)

∂Y
=

1

GrPr
∇2φ − u[1 + (a − 1)φ]

Gr[1 + (a − 1)εX]

+
2(a − 1)

PrGr2[1 + (a − 1)εX]

∂φ

∂X
− (a − 1)(U0φ + uφ0)

Gr[1 + (a − 1)εX]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where the operator ∇2 = ∂2/∂X2 + ∂2/∂Y 2, a = Nw/N∞, and ε = 1/Gr . (a − 1)ε
characterizes the degree of spatial inhomogeneity of the basic flow. U = U0 + u, V =
V0 + v, P = P0 + p and Φ = φ0 + φ, where U0, V0, P0 and φ0 constitute the
undisturbed basic flow solution which will be determined in § 3.

The governing equations are solved by a semi-implicit projection method (Chorin
1967; Peyret & Taylor 1990) on a uniform mesh. The most time-consuming part of the
solver, the solution of the corresponding discrete Poisson’s equation, is obtained by
a multigrid method. The spatial discretization of the primitive variables uses a finite
difference scheme and a partially staggered approach or ALE (arbitrary Lagrangian
Eulerian) method: the pressure P and temperature Φ are defined at the cell centre
while both components of the Cartesian velocity u and v are defined at the cell
corner. This method is convenient for application of the buffer domain technique that
is discussed below.

The boundary conditions are as follows. The homogeneous Dirichlet boundary
condition (u = v = φ = 0) is imposed at the inlet. On the solid wall a no-slip
boundary is used, and at the far field homogeneous Neumann boundary conditions
are applied:

∂u

∂Y
=

∂v

∂Y
=

∂φ

∂Y
= 0. (2.2)

At the outflow boundary, vanishing second derivatives in the X-direction for the
disturbing velocities u, v and φ are used. For the pressure, Neumann boundary
conditions are used at the inlet and on the solid wall. A zero second derivative in the
Y -direction is used at the far field and a zero third derivative of the pressure in the
X-direction is used at the outlet boundary.

A buffer domain technique is used to eliminate the possible reflection of waves near
the outlet, which has been used by Chomaz (2003) to study the nonlinear dynamics
of parallel wakes. The total computational domain includes an original domain
(length L) and a buffer domain (length δr + δf ). A linear damping term
−A(X)u(X, Y, τ ) is added to equation (2.1) for the u component, and the same
treatment is applied to the velocity v and temperature φ. The damping function A(X)
is smooth and given by the (Högberg & Henningson 1998)

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, X < L,

A

/[
1 + exp

(
δr

X − L
+

δr

L + δr − X

)]
, L < X < L + δr,

A, L + δr < X < L + δr + δf .
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The damping intensity is determined by A, δr is the length of the region where the
damping grows from zero to A, and δf is the length of the region where the damping
intensity is kept constant.

It has been verified that the global frequencies do not change for values of the
damping coefficient A between 0.2 and 5. A = 0.5 is used in all simulations. The
buffer domain occupies a seventh of the total computational domain. The total grid
varies from 576× 96 to 1024× 96 with the original domain from L = 60 to L = 100,
and Ymax = 12

√
2 is used in all simulations.

The initial divergence-free perturbation used in the simulations corresponds to a
vortex with a Gaussian envelope. Its streamfunction is

ψ
′
= δexp

(
− (X − X0)

2 + (Y − Y0)
2

r2
0

)
(2.3)

with (X0, Y0) the centre of the vortex, δ the strength parameter of the vortex and r0

the initial size of the perturbation.

3. Basic flow and linear theory
In order to obtain a similarity solution, Gebhart’s method (Gebhart et al. 1988) is

used to find the following forms of velocities and temperature:

U0 = 2[1 + (a − 1)εX]F ′
0(η), V0 = 2

√
2(1 − a)εF0(η), φ0(X, Y ) = H0(η) (3.1)

where η = Y/
√

2. Note that η does not include X because of the background thermal
stratification; this is different from the forced-convection boundary layer described
by the Blasius equation.

By applying the boundary-layer approximation and the above transformations, we
can obtain the following ordinary differential equations for steady basic flow:

F ′′′
0 + 4(a − 1)F0F

′′
0 − 4(a − 1)(F ′

0)
2 + H0 = 0,

1

Pr
H ′′

0 + 4(a − 1)F0H
′
0 − 4F ′

0[1 + (a − 1)H0] = 0,

⎫⎪⎬
⎪⎭ (3.2)

with boundary conditions

F0(0) = F ′
0(0) = 1 − H0(0) = F ′

0(∞) = H0(∞) = 0. (3.3)

A no-slip boundary condition for the velocity is used on the wall, while in the far
field the vertical velocity decays.

It has been confirmed by direct numerical simulations (Tao, Le Quéré & Xin 2004b)
that this similarity solution describes exactly the steady convection flows near the
vertical walls dissipating uniform heat flux in a cavity. Since the velocity component
includes the coordinate X, the boundary-layer flow is a slowly spatially developing
flow except for a special case (a = 1). Equations (3.2) and (3.3) are solved by a fourth-
order Runge–Kutta procedure and shooting method, and the results are shown in
figures 2(a) and 2(b).

The following forms of disturbance streamfunction and temperature are employed
(subscript 1 refers to the normal mode):

ψ1 = 2
√

2[1+(a−1)εX]Ψ1(η) exp[i(k1X−ω1τ )], φ1 = Φ1(η) exp[i(k1X−ω1τ )], (3.4)
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Figure 2. (a) Vertical velocity, (b) temperature profiles of the basic flows and (c) modified
absolute growth rate for various temperature gradient ratios a for Gr = 185, a = 0.72. The
dashed line, thick solid line, thin solid line and dotted line correspond to a = 0.68, 0.7, 0.72
and 0.73, respectively.

and the Orr–Sommerfeld equation coupled with the energy equation can be obtained
according to stability theory:

(
Ψ

′′

1 − k2Ψ1

)
F

′

0 − ω

k
− F

′′′

0 Ψ1 =
1

ikG

[
Ψ

′′′′

1 − 2k2Ψ
′′

1 + k4Ψ1 + Φ
′

1

]
,

F
′

0 − ω

k
Φ1 − H

′

0Ψ1 =
1

ikGPr

(
Φ

′′

1 − k2Φ1

)
− 4

ikG
Φ

′

1,

⎫⎪⎬
⎪⎭ (3.5)

with the boundary conditions

Ψ1(0) = Ψ
′

1(0) = Φ1(0) = Ψ
′

1(∞) = Φ1(∞) = 0, (3.6)

where G = 2
√

2Gr[1 + (a − 1)εX], k =
√

2k1 and ω = ω1/(
√

2[1 + (a − 1)εX]).
The modified Grash of number G, wavenumber k and frequency ω provide general
measures for instability properties. In order to deduce equations (3.5) and (3.6) some
additional terms are ignored as G−1 � 1 is assumed. This condition is satisfied well
in all instability problems discussed later.

The coupled disturbance equations (3.5) and (3.6) are discretized with a fourth-
order finite difference scheme at uniformly distributed points in the η interval, and a
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Figure 3. Spatio-temporal diagrams of v at η = 2 for Gr = 185 and a = 0.72: (a) globally
unstable case with contour spacing 0.0032, (b) convectively unstable case with contour spacing
0.00076. The vertical dashed line indicates the theoretical position Xcrit for marginal absolute
instability. The (X0, η0) of initial disturbances for (a) and (b) are (60, 1.3) and (10, 1.3),
respectively.

fully spatio-temporal stability analysis is carried out in order to compare with direct
numerical simulation results. For details of the solution methods refer to Tao &
Zhuang (2000) and Tao et al. (2004b).

According to the Briggs–Bers criterion which is associated with a zero-group-
velocity condition: dω/dk(k0) = 0 and ω0 = ω(k0), a flow is locally convectively
unstable when the modified growth rate ω0,i < 0 and locally absolutely unstable when
ω0,i > 0; ω0,r is the modified absolute frequency. Furthermore, a finite absolutely
unstable domain will lead to global instability for spatially developing flows provided
that the domain is sufficiently long (Chomaz 2005). As shown in figure 2(c), decreasing
a will increase the critical Gcrit where ω0,i = 0 for the present boundary layers. It is a
demanding task to investigate numerically the full three-dimensional parameter space
spanned by the parameters G, a, P r and we shall restrict the discussion to several
examples with Pr = 0.35 and a = 0.72, where the critical Grashof numbers for
convective/absolute instability transition are low enough for numerical simulation,
and the convectively unstable regions are long enough to show clearly the trailing
front separating the base-state region from the bifurcated-state domain. The Prandtl
number’s effect on the local convective/absolute instability transitions has been
investigated theoretically in Tao et al. (2004a). Since Gr is chosen and fixed in
numerical simulations, the modified Grashof number G decreases as X increases in
the downstream direction. This feature is helpful for us to study the spatio-temporal
properties at Gcrit as we can set the inlet and the outlet in the convectively unstable
and the absolutely unstable regions, respectively.

4. Results
The spatio-temporal diagrams in figure 3 illustrate the evolution of two initial

perturbations in the boundary-layer flows. Note that Gcrit = 471.07 (figure 2c) and
the corresponding Xcrit = 65.9 for a = 0.72 and Gr = 185. The early-time evolution
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Figure 4. Flow field of convectively unstable case: contour lines of u for Gr = 185 and
a = 0.72. Contour spacing is 0.00051. Obtained at (a) τ = 200, (b) 800, (c) 1400 and (d) 2000.
Solid (dotted) lines indicate positive (negative) values of u. (X0, η0) of initial disturbance is
(10, 1.3).

is similar in both cases: the generated wave packet rapidly grows and saturates as
time increases. The difference between these cases is that the trailing front propagates
upstream in the locally absolutely unstable domain (X > Xcrit in figure 3a) and is
blocked around the critical position Xcrit of marginal absolute instability, whereas it
moves downstream in the convectively unstable region X < Xcrit (figure 3b). Therefore,
this result confirms the prediction of the existence of global instability in flat-plate
boundary-layer flows (Tao et al. 2004a). The evolution in figure 3(a) is slower than
in figure 3(b) since the closer to the absolute threshold, the smaller the speed of the
trailing front and the longer the time needed for the unstable flow to be saturated.

The time series of the spatially evolving disturbance field are shown in figure 4
and figure 5. It is seen that the initial impulse perturbation induces a front of finite-
amplitude waves whose amplitudes increase in the downstream direction but decrease
with time. As a result, the front moves downstream and the flow relaxes to zero for the
convectively unstable case (figure 4). On the contrary, the amplitudes of the globally
unstable waves increase with time until the front reaches its saturated state at the
critical position (figure 5). It is also shown in figure 5 that the domain upstream of
the dashed line remains unperturbed except for the upstream neighbourhood of the
trailing front, where the disturbance amplitude decreases in the upstream direction
due to the convectively unstable property. This fact is used to examine numerically
the critical position for global instability.

We check the time series of the disturbance velocity at a fixed point which is in
the convectively unstable region but very close to the critical position. By increasing
gradually the length L of computational domain for given values of Gr and a, the
maximum amplitude of the disturbance velocity at the fixed point decreases with
time when the original domain is entirely convectively unstable or increases when
the globally unstable region is included near the outlet. As shown in figure 6(a)
the flow at the outlet of the computational domain is not absolutely unstable until
L = 66.5. Therefore, the critical position for global instability Xcrit is between
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Figure 6. (a) Time dependence of the maximum amplitude of v(X = 60, η = 2) calculated
at different lengths L of the computational domain for Gr = 185, a = 0.72. (b) The modified
absolute growth rate as a function of modified Grashof number G. The vertical dashed line
indicates the critical GDNS of global instability obtained from direct numerical simulation.
LAU: locally absolutely unstable, LCU: locally convectively unstable.

(66, 66.5). The corresponding modified critical Grashof number GDNS, shown in
figure 6(b) as a vertical dashed line, agrees very well with the marginal Gcrit for
local absolute instability. The relative difference between the DNS and theory
is: |Gcrit − GDNS|/Gcrit < 0.101%. Therefore, the position of the trailing front is
determined by its local dispersion relation, though the initial temporal growth rates
of waves near the front are also affected by downstream unstable modes due to its
global instability characteristics.

A key issue for global instability is the global frequency selection criterion. Time
series are recorded at positions close to the front and downstream far from the front
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Figure 8. (a) Power spectra of u at different streamwise positions with η = 2. (b) Local
absolute frequency as a function of streamwise coordinate X for Gr = 185, a = 0.72 and
L = 100. The circles indicate the dominant frequencies obtained from direct numerical
simulations and the black point represents the marginal absolute frequency.

(figure 7). It is shown that the disturbances, whose amplitudes increase exponentially
in the early stage, reach saturated periodic oscillating states at τ = 10000. The
corresponding spectrum analysis is also carried out to analyse this synchronized
behaviour of the flow (figure 8a). Inspection of these spectra demonstrates that the
globally unstable region is turned into an oscillating state with a global fundamental
frequency ω1,DNS and its harmonics. Figure 8(b) shows that this global frequency stays
constant in the downstream direction and is in good agreement with the marginal
absolute frequency ω1,crit = ω1(Xcrit) deduced from the local linear dispersion relation
based on unperturbed basic flow: the difference is |ω1,crit − ω1,DNS |/ω1,crit = 0.68%.
However, note that the consistency between the DNS and theory becomes worse
when Gr decreases, as shown in figure 9, because smaller Gr leads to larger (a − 1)ε
which represents stronger non-parallelism in the flow field.

5. Concluding discussion
A buoyancy-driven flow near a vertically heated flat plate immersed in a thermally

stratified medium is studied numerically and theoretically. In contrast to previous
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represent the global frequencies obtained from direct numerical simulations and the marginal
absolute frequencies, respectively.

flat-plate boundary-layer flows, in the present model nonlinear global modes in
the form of self-sustained oscillations with well-defined frequency are identified.
The trailing front, separating the convectively unstable domain from the saturated
oscillating state, is determined by the marginal absolute instability. The nonlinear
global frequency is just the marginal absolute frequency deduced from the local linear
dispersion relation.

Such a boundary-layer flow could serve as a model for the study of the laminar–
turbulent transition of globally unstable flow and offers several advantages. First, it
has a free trailing front selected naturally by the flow, while for most other open
shear flows, for instance the cylinder wake which is the most popular model, the
upstream threshold of absolute instability is a solid wall. Secondly, it is found that
the strong non-parallelism in cylinder wakes may account for the discrepancy between
onset of absolute instability and onset of global instability (Pier 2002), while for the
present model its non-parallelism is characterized by (a − 1)ε, which is much smaller
than unity in most cases. Finally, in contrast to the flow produced by a rotating
disk where a sharp turbulence transition occurs owning to the coincidence of the
secondary absolute instability and the primary instability (Pier 2003), the present
globally unstable flow (figure 7) reaches a saturated state at appropriates parameters.
This is very convenient and helpful in the study of the sequence of bifurcation (Busse
2003) leading to turbulence. In our calculation, it is also found that the secondary
instability will occur when the globally unstable domain is large enough, and its
spatio-temporal characteristics will be a future research topic.
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